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Abstract

A general assembly of n systems from k types of components is considered. The
techniques of majorization and Schur-function are utilized to pinpoint the optimal assembly
under several criteria. Earlier results of Derman, Lieberman and Ross(1972) and El-

Neweihi, Proschan and Sethuraman(1986) are generalized.
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1. Introduction ;

y

"+ In this paper we consider- the optimal assembly of n systems from components of & :
types. Special cases of such a problem have been studied earlier in the literature. El-
Neweihi, Proschan and Sethuraman(1986) studied the case of a single type of components.
Derman, Leiberman and Ross(1972) considered the case where each system consisted of X
one component of each of k types. We generalize the ideas of both of these papers to the R
case where the systems may consist of varying numbers of components from more than N
one type. by
An assembly of the n systems corresponds to a partitioning A of the components to the N

different systems. For more details see Section 2. When the components act independently,
we show in sections 2 and 3 that an intuitively motivated partitioning A* provides the .
optimal assembly under many different criteria. X
In Section 3, we allow each system to have dependent components, and under some .
general conditions on the reliability function we show that the same partitioning A* pro-

vides an optimal assembly. :
The results of this paper are based on the well known techniques of Schur- funtions r
and majorization. This makes them clear and simple and at the same stime more general Y
than in the papers cited. N
)
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2. Reliabilities of general asserably

with independent components

In, this section and the next section we will consider the assembly of n systems from
k typés of components. To be more specific we shall assume that the j** system is a
series system of m;; components of type ¢, where all the components act in¢ependently,
1 <1<k, 1<j<n. Thematrix M = (m;;) will be called type-enumerator matrix of the
n systems, and for each j, 1 < j < n, the vector m; = (my;,ma;,...,mg;) will be called
the type-enumerator vector of system j. We will make the following important assumption

about the type-enumerator vectors:
(2-1) m; >mz 2> -+ > My,
where the inequality sign between two vectors stands for coordinate-wise inequality.

By allowing some m;,’s to be equal to zero we can accomodate systems with fewer than
k types of components. Let M; = Z;=1 m;;, 1 <1 < k. We need M; components of type
1, 1 <1< k in order to assemble n systems with type-enumerator matrix M. For this, we
will only need to partition the M; components of type 1, into n subsets A;;, A;a,..., 4;n
of sizes m;y,mia,...,Min, 1 < & < k and construct the jt* system as a series system
with the m,; components of type 1 in A;;, 1 <1+ < k, 1 < j < n. Each partitioning
A= (A,-J-) of this type leads to a different assembly and there are Hle (m“‘mff"'m‘mm)

such partitionings.

With no loss of generality we may assume that we can re-order the components of

type 1 (if necessary) so that their reliabilities satisfy

pi1 $pi2 <... £ Pim,s for 1 <1<k

RN IR AR, LS O N AN 3 3 I I N I R Ot AN N A PO 2 0 M AT R P T NN N
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The reliability of the y** system assembled from the partitioning A, like the one described
above, is given by

k
(2-2) Ri(A) =] I »ien

i=1 s€A,,
for 1 < j < n. Let X;{(A) =logR;(A),1 < j < n. Then R(A) = (R;(A),R2(A),...,
R.(A)) and X(A) = (X1(A), X2(A),..., X,(A)) are the reliability vector and the log- :

Cam o aa

reliability vector of the n systems assembled from the partitioning A.

Consider the special partitioning A* defined as follows. The components of type

i are partitioned into sets A, A5,,..., A;, of sizes m;;,m;2,...,m,,, respectively, with

v v e

AL ={L,2...,my}, AL, = {my +1,my +2,...,m;; + mia}, etc,, 1 <1 < k. Notice ’
that A}, consists of components of type 1 with the m;; lowest reliabilities, A}, consists
of components of type ¢ with the m,; next lowest reliabilities, ..., and A}, consists of
components of type i with the m;, largest relibilities. Let R(A*) and X(A*) be the )

reliability vector and the log-reliability vector of the n systems assembled from A*.

Theorem 2.1. Consider the general problem of assembling n series systems with k types
of components with a type-enumerator matrix M satifying (2-1). Let A be a general
partitioning and A* be the specific partitioning described as above. Let R(A) (X(A)) and
R(A*) (X(A*)) be the vector of reliabilities (log-reliabilities) of the n systems assembled

according to the partitionings A and A* respectively. Then '

m -
X(A*) > X(A) »
where g stands for majorization.
Proof. It is clear that -
X1 (A®) € X2(A®) < ... < Xo(A%).
5
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Let X(1)(A) £ X(2)(A) £ ... £ X(n)(A) be an increasing rearrangement of X;(A),
X2(A),..., Xn(A). Notice that X,(A*) is the sum of the m;, largest log-reliabilities of
the components of type 1 for 1 <1 < k, and thus exceeds X(n)(A) which is the sum of
the log- reliabilities of m! components of type 1 with m} > m;, for 1 <1 < k. A similar
argument shows that X,(A*) + X,_1(A*) > X(n)(A) + X(n-1)(A). Continuing in this

fashion, we find that

Xa(A*) + Xoo1(A*) +---+X5(A)

ZX(")(A)+X(n—-1)(A)+"‘+X(J-)(A), 2<j<n

Also,
n k M, n
Y X (A) =) logpi =Y X;(A).
=1 1=1s=1 =1
Hence

X(A*) > X(A).0

Special cases of the general setup of assembly of systems described in this section and
of Theorem 2.1 have appeared earlier in the literature. The use of majorization allows us
to show later in this section, in a clear and simple fashion, that the partitioning A* leads

to the optimal assembly under several different criteria.

El-Neweihi, Proschan and Sethuraman(1986) set k = 1, that is considering only one
type of components and studied the optimal assembly of n systems. Theorem 2.1 above

reduces to Theorem 2.1 of their paper.

Derman, Leirberman and Ross (1972) considered the case where the elements of the
type-enumerator matrix M are all equal to unity. In this case we have n components of
type i for 1 < i < n and there are (n!)* possible partitions. They use a different approach

to show that the partitioning A* is optimal under some of the criteria listed below.

6
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We now show that the partitioning A* found in Theorem 2.1 provides the optimal

assembly under several different criteria. We list these below as remarks.

Remark 2.2. Let N(A) be the number of functioning systems among the n systems
assembled from the partitioning A. Then E{(N(A)), the expected number of functioning
systems is maximized for the partitioning A*. This follows from the fact that E(N(A)) =

>_7=1exp(X;(A)) is a Schur- convex function of X(A) and is maximized at A*.

Remark 2.3. Suppose that we allow only those systems to be assembled whose reliabilities
are at least 1/4. This is a condition that will be very often met in practice. Then the
variance of N(A), the number of working systems is minimized at A*. To see this we note

that

V(N(A)) = iexl(A)(l _ eX;(A))

and the function e*(1 — %) is concave for z > 1. Thus V(N(A)) is a Schur-concave
1
a

function of X(A) in the region X(A) > (4,%,...,1) and is minimized at A*.

Remark 2.4. We can strengthen Remark 2.2 as follows. The number of working systems
N(A*) under A* is stochastically larger than N(A) for any other partitioning A. This
follows from Theorem 2.1 above and Theorem 2.2 of Pledger and Proschan(1971). This
result can be translated as follows: Consider a new system S{A) which is an r-out-of-
n system whose components are the n assembled systems according to partitioning A,
1 < r < n. Then the reliability of S(A) is maximized when it is constructed from the

partitioning A*.

Remark 2.5. Let Y;(A) be the expected number of working components in the 7" system

assembled from the partitioning A, 1 < j < n, and let Y{A) = (Y;(A),...,Y,.(A)).

Assume further that m;; =m;; = .- =m;, for 1 <{¢ < k. Then Y(A") '£ Y (A) for all




A. This follows from the relation

k
Y;(A Z § Pis
s=1 iy

and an argument similar to the one in the proof of Theorem 2.1. We can now state that A*
maximizes any Schur-convex function of Y(A) and minimizes any Schur-concave function

1/
of Y(A). Examples of such functions are (E;.'___l Y’.”(A)) p, p > 1 and J];_, Y;(A)

respectively.

e
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3. Life times of general assembly

with independent components

In this section we extend the results of the previous section on optimal assembly of n
systems with k types of components and type-enumerator matrix M satisfying (2-1) to in-
clude a time element. Let the life-times of the M; components of type 1 be T}, Tio, ..., Tiay,

and suppose that

st &t at
(3-1) Ty <Ti2 <--- < Tim,,

for 1 <1 < k. Let A be a partitioning of the components as described in the previous
section and let T;(A),T2(A),(A),...,Tn(A) be the life-times of the n assembled systems
and let

T(A) = (T1(A),T2(A),...,T.(A))

be the life-time vector corresponding to the partitioning A. We assume that the compo-
nents act independently, as in the previous section, and we therefore have, for each time
t >0,

k
(3-2) P(T;(A) > t) =[] [] P(Tw > 1),

i=1:€A,,
1 < j < n, which is analogous to (2-2). Condition (3-1) states that the ordering among
{P(T;, > 1), 1 <s <M, 1<1<k}is the same for all t. The optimal partitioning A”
of the previous section which dependeds on this ordering remains invariant for all t. Thus

we obtain immediately from Theorem 2.1 and Remark 2.4 that

(log P(T1(A*) > t),...,logP(T(A%) > 1))

> (log P(Ty(A) > 1),...,log P(Ta(A) > 1))




and

-

znjf A) >1)

J=1 =1

(3-4)

]
=~
3
v

1 for all t and all partitionings A. From (3-4) it follows that

(3-5) Ti(A%) 2 T,y (A)

B b Al el nte o

for 1 < r < n and all partitionings A, where T, (A) is the r? order statistic of (T}(A),
T2(A),...,T,(A)). As a further consequence, we obtain

n n

| (3-6) > Blor(Ty(AD) = 3 Bl (T (4))

r=1 r=1

whenever gy,...,gn are increasing functions. In particular, if g,(z) = z for 1 <r < n, we :
obtain ;
)
n n
(3-7) E|D Ti(A") | 2 E| ) _Ti(A) 2
=1 I=1 J -
which shows that a system consisting of using the n assembled systems one at a time in
succession has maximum expected life if assembled from the partitioning A*. We can
extend the result on individual order statistics in (3-5) to a result for the whole vector of ..
order statistics by strengthening condition (3-1) as follows. Assume that the component
life-times have proportional hazard functions and satisfy (3-1), i.e., :.-
(3-8) P(Tiy > t) = exp(—A:s H(t)) )
where H(t) is a hazard function and
it 2 A2 2 -0 2 A, -

for 1 <1 < k. For any partitioning A, let

10
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k
M(A) =D ) A, 155 <n,
1=14€A,;

and let A(A) = (A;(A), A2(A),...,An(A)). It easily follows that A(A*) > A(A) for any

partitioning A. Futhermore (T;(A),...,Tn(A)) are independent random variables with .

proportional hazards and P(T;(A) > t) = exp(—A;{(A) H(t)), 1 < j < n. From Theorem .

3.4 of Proschan and Sethuraman(1976) it follows that

ot i«

(3'9) (T(l)(A‘)aT(Q)(A‘)"“ )T(n)(A‘)) 2 (T(l)(A)QT(2)(A)v $T(n)(A)) ;
‘

for all partitionings A. This is a stronger result than (3-5). A consequence of (3-9) is -

n ot n
(3-10) D_Ti(AY) 2 3 Ty(A)
J=1 =1 A\

which is stronger than (3-7). 5
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4. Assembly of systems with one component of each type

In the previous two sections we studied the assembly of n series systems from k types
of components. In this section we study the assembly of more general systems. We will
assume that all the elements of the type-enumerator matrix M are equal to 1. We make this
assumption for reasons of simplicity. Thus we have n components of type i for 1 <1 < k,
and we need to construct n systems, each of which needs one component of each type.
As before this can be done by using a partitioning A = (4,;), where A;; is the singleton
{a;;} and, for each 1,1 <i <k, (@i1,...,8in) is a permutation of (1,...,n). Thus the j**
system will consist of components a;;, as;,..., ax;. The reliability of this system will be
assumed to be given by R;(A) = R(cyy, €25,-..,¢k;) Where ¢;; is an attribute associated
with component a;;. This attribute may be the actual reliability of the component or some

concommitant of it. Without loss of generality we may assume that

(4-1) €1 Sci2 $-- <k, 1515k

The use of a general function R as above allows us to consider more general systems than
series systems. We will assume that the function R satisfies the following two conditions

which are generally satisfied by reliability functions:

(4-2) R(eg,y..-ycex) is nondecreasing in each coordinate,

and for (ey,...,¢x), (d1,.-.,dx),

(4-3) Rfecyy...,ex) + R(dy,...,di) < R(ey Vdy,...,cx Vdi) + R(ey Ady,. .. e Adi),

where cvd = max(c, d) and ¢cAd = min(c, d). Such reliability functions occur, for instance,

when R(cy,...,ex) = P(Y1 < ey,...,Yx < ¢x), where Y),...,Y; represent some (possibly

12
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dependent) random variables(damages) associated with the k components and the system
fails as soon as some Y; exceeeds c;(threshold). Let R(A) = (R,(A),..., R,(A)) be the
vector of reliabilities of the n systems assembled from the partitioning A. Let A* be the
partitioning mentioned in the previous two sections, which in view of (4-1) corresponds to .
A} ={j},1<i<k, 1<j<n Theorem 4.1 below shows that R(A*) maximizes R(A)
in the LWeak mojorization sense. We draw several interesting conclusions from this fact in

the remarks that follow. .

Theorem 4.1. Let the attribute {c;;} satisfy (4-1) and let the reliability function R
satisfy (4-2) and (4-3). Then

(4-4) R(A*) = R(A) 3

w.m.
for all partitionings A, where > stands for weak majorization. .

Proof. From the monotonicity of R it follows that

Ri(A") < Ry(A®) < - < Ro(A°).

.
Let R(1)(A), R(2)(A), ..., R(n)(A) be an increasing re-arrengement of R, (A), R2(A),..., R,(A). ;
We have to prove that -
(4-5) | Y R;(A%) 2 Z R;(A) )
for 1 < r < n. Note that "' " E
R.(A*) = R(e1ny---Ckn)

and :
Ri)(A) = R(C1aus-+- »Chans) 3

for some [ with 1 <! < n. From the monotonicity of R, it follows that R,(A*) > R(,)(A). .
Again, from the monotonicity of R and from (4-3), :
Rin)(A) + Rin—1)(A) = R(erayr- -+ »Ckan) + R(c1a,ms-+ - sCkasm) for some 1<, m<n E
< R(c1a,, V Clagms - -+ s €kans V¥ Ckagm) T B(C1ay A Clayms -+ Chaxy A Chagon) )

< Rusi(A) + Ba(A"). )
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Inequality (4-5) is established in a similar fashion for allr with 1 <r < n. ¢
An immediate consequence of Theorem 4.1 is the following. Let ¢ be a Schur-convex

function of n arguments which is non-decreasing in each argument. Then
(4-6) . ¢(R(A")) 2 4(R(A))

for all' partitionings A. The opposite inequality is true if ¢ is Schur- concave and non-
increasing. This fact is used in the following remarks to point out that in many ways the
assembly from A* is optimal. Let N (A) be the number of working systems among the n

systems assembled from partitioning A.

Remark 4.2. E(N(A*)) > E(N(A)). This follows from fact that E(N{A*)) = 3°7_, R;(A*)

> ¥i-1 Ri(A) = E(N(A)).

For the remaining remarks below we assume that the n assembled systems are stochas-

tically independent.

Remark 4.3. Suppose that R;(A) > 7 and R;(A*) > 1, 1< j < n. Then Var(N(A*)) <
Var(N(A)). Observe that the function ¢(z,,z,,...,2,) = Y 7, z;(1 — z;) is a Schur-

concave function which is nonincreasing in the region z; > 1,z > yTn > 3. Now

E

Var(N(A*)) = L5, R;(A*)(1 - R;(A%)) < 557, R;(A)(1 - R;(A)) = Var(N(A)).

Remark 4.4. P(N{A*) > 1) > P(N(A) > 1). Again the function ¥(z1,2z2,...,2,) =
1- ;.'=,(1 — z;), where 0 < z; <1, 1 < j < n, is Schur-convex and non-decreasing.

Therefore P(N(A*) > 1) = 1-JI7_,(1-R,;(A*)) > 1-]]7_;(1-R;(A)) = P(N(A) > 1).

Remark 4.5. Let 2 < k < n, and assume R;(A) > &=L R (A*) > 5211 < j < n. Then

P(N(A*) > k) > P(N(A) > k). This follows immediately from Theorem 4.1 above and

Theorem 1.1 of Boland and Proschan(1983).
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In the above discussion we assumed that the each of the n systems required one
component from each of the k types. We can incorporate the case where fewer than k
types are needed for some systems by allowing the type- enumerator matrix to consist of
ones and zeros only. This together with condition (2-1) implies that when a system contains
one component from each of m types, 1 < m < k, then these are types 1,2,...,m. the
reliabi:lity of such a system will depend on the attributes ¢y,...,¢,n of the components.

We will assume that this reliability is equal to
R(cy,¢25...4€m,00,...,00)

where R is a function of k arguments satisfying (4-2) and (4-3). We can now introduce
fictitious extra components whose attributes are oo of the appropriate types so that the
optimal assembly problem for the present case reduces to the optimal assembly problem
of n systems from k types of components with a type-enumerator matrix consisting of all

ones.
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